Abstract

This paper presents a study of Walters’-B fluid with Caputo–Fabrizio fractional derivatives through an infinitely long oscillating vertical plate by Newtonian heating under the action of transverse magnetic field. The fractional calculus approach is employed to obtain a system of fractional partial differential equations. The governing equations of momentum and energy are converted first into dimensionless form and then solved by employing Laplace transformation. The Laplace inverse transform has been evaluated both analytically and numerically. The graphical illustrations represent the behavior of material parameters on the solutions. A comparison between exact and numerical solutions is presented in tabular and graphical form. The variation in Nusselt number with the change in fractional and physical parameters is also presented. The velocity and temperature of the fluid decreases with the enhancement in the fractional parameter for small values of time, and it has the opposite behavior for greater values of time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call