Abstract

The original article's purpose is to assess transfer of heat exploration for unsteady magneto hydrodynamic slip flow of ternary hybrid Casson fluid via a nonlinear flexible disk placed within a perforated medium of a magnetic field in the presence. Unsteady nonlinearly stretched disk inside porous material causes flow to occur. In the investigation, convective circumstances on wall temperature are also considered. The governing equations (PDEs) are transformed into ordinary differential equations (ODEs) using appropriate transformations, and the Keller-box technique is employed for their solution. In forced convection, the variable radiation has no direct impact on fluid velocity, but it is noticed that in the case of aiding flow, fluid velocity rises with an increase in radiation parameter, and the opposite is true in the case of opposing flow. Furthermore, it is experiential that fluid concentration and velocity goes up in creative chemical reactions, and both profiles decrease in detrimental chemical reactions. Moreover, a slightly greater unsteadiness characteristic lowers fluid, concentration, temperatureand velocity. Physical parameters' effects on fluid temperature, concentration, and velocity, as well as on wall shear stress, energy, and mass transfer rates, are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.