Abstract

The miniaturization of electronic devices without compromising their heat dissipation capacities is the main concern due to the rapid evolution in power industries and engineering fields. The conventional methods of cooling or heating the devices are changed and old tactics of using conventional fluids for heat dissipation are replaced with nanofluids of strong thermal efficiency. In the present context, the experimental as well as theoretical studies of nanofluids (Cu–H2O/Al2O3–H2O) flow inside the wavy and microchannels are elucidated and discussed for different physical conditions. It is found that the use of Cu–H2O/Al2O3–H2O nanofluid improves the thermal efficiency of heat exchangers. The complex shapes and sizes of heat exchangers such as multilayer heat exchangers, heat exchangers with twisted and square shapes and multijet heat exchangers are considered effective coolants as compared with straight microchannel heat exchangers. The use of Cu–H2O/Al2O3–H2O nanofluids improves the overall heat transfer efficacy of electronic devices, and it is considered a promising coolant for various applications including aerospace (spacecraft and satellites), automobile (cooling the engines and power management in electric vehicles), renewable energy (solar plants), microelectronic devices (heat dissipation through the microprocessor and cooling the other components of devices) and modern heat exchangers of engineering domains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call