Abstract

In this article, we considered the peristaltic flow of Newtonian incompressible fluid of chyme in small intestine. The analysis has been performed using an endoscope. The peristaltic flow of chyme is modeled by assuming that the peristaltic wave is formed in non-periodic mode comprising two sinusoidal waves of different wave lengths propagating with same speed along the outer wall of the tube. Heat transfer mechanisms have been taken into account, such that the constant temperature [Formula: see text] and [Formula: see text] are assigned to inner and outer tubes, respectively. A complex system of equations has been simplified using long wavelength and low Reynolds number approximation because such assumptions exist in small intestine. Exact solutions have been carried out for velocity temperature and pressure gradient. Graphical results have been discussed for pressure rise, frictional forces, temperature, and velocity profile. Comparison of present results with the results of the existing literature have been presented through figures. Trapping phenomena have been presented at the conclusion of the article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call