Abstract

The objective of this research is to study the combined influences of applied electric and magnetic fields on the two-phase peristaltic motion of nanofluid through a curved channel. A two-phase model of a nanofluid, Maxwell's model of thermal conductivity [1], and no-slip velocity and thermal boundary conditions have been used in this study. Hall effects, Joule heating (due to magnetic and electric fields), and viscous heating aspects are under consideration. Governing equations for the present flow configuration have been modeled and simplified by enforcing the lubrication scheme. Debye-Huckel approximation is used to obtain the analytical solution of the electric potential function (Poisson-Boltzmann equation). Resulting expressions are solved numerically through the NDSolve command in Mathematica and plotted in order to understand the effects of different dimensionless parameters on the temperature, stress, heat transmission rate, and fluid's velocity. Graphical results demonstrated that the thermal transmission rate is augmented by increasing the Hartmann number, Brinkman number, and Debye-Huckel parameter while decreases for zeta potential ratio, Joule dissipation parameter, and electro-osmotic velocity. A decrease in axial velocity is noted near the lower wall for higher values of [Formula: see text].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call