Abstract

Metal foam (MF) and nano-sized particles (NSP) are regarded as patent tools for enhancing the thermal performance of phase change materials (PCM)-based latent thermal energy storage unit (LTES), but data on this issue for large-scale installations is very scarce. This study provides a comprehensive computational analysis of the effects of MF and NSP on the solidification process of RT82 paraffin (PCM matrix) in a large-scale shell-and-tube latent thermal energy storage unit (of heat exchanger form). The developed 2D transient model developed on Ansys Fluent 15.0 software was initially verified using available literature experimental data. The process performance was tested for 5% Al2O3 nanoparticles and various MFs [i.e. aluminum (Al), copper (Cu), nickel (Ni) and titanium (Ti)] with varied porosity (96–100%). The computed mean and spatial temperature and solidified degree of the PCM block showed a drastic acceleration of the solidification process with the b MF technique rather than with the nanoparticles system. The solidification performance increased in the direction of MF-thermal conductivity increase, i.e. Cu > Al > Ni > Ti, and material porosity decrease. These conditions allow rapid HTF heat recovery and then stocking considerable thermal energy. However, the MF porosity could not decrease below 95% to avoid a huge loss of material storage (PCM), thereby diminishing the thermal storage capacity of the LTES unit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call