Abstract

We consider the Hodge-Laplace operator on manifolds with incomplete edge singularities and an intricate elliptic boundary value theory. We single out the class of algebraic self-adjoint extensions for the Hodge Laplacian. Our microlocal heat kernel construction for algebraic boundary conditions is guided by the method of signaling solutions by Mooers, though crucial arguments in the conical case obviously do not carry over to the setting of edges. We establish the heat kernel asymptotics for the algebraic extensions of the Hodge operator on edges, and elaborate on the exotic phenomena in the heat trace asymptotics which appear in the case of a non-Friedrichs extension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.