Abstract

To explore the role of endoplasmic reticulum stress in heat stress-induced apoptosis of human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were incubated at 43 ℃ for 2 h followed by further culture at 37 ℃ for 0, 3 h, or 6 h. With the cells cultured at 37 ℃ as the control, the cells exposed to heat stress were examined for morphological changes under optical microscope and changes in cell viability using CCK-8 assay. Flow cytometry was performed for detecting apoptosis of the cells following heat stress, and intracellular Ca2+ level in the cells was determined using flow cytometry and immunofluorescence confocal microscopy. The mRNA expression levels of caspase-12, BIP and XBP-1 in the cells were detected using qRT-PCR, and the protein expressions of caspase-12, BIP, P-JNK, JNK and XBP-1 were examined using Western blotting. The effect of pretreatment with 4-PBA on cell apoptosis following heat stress was analyzed with Western blotting. SH-SY5Y cells showed obvious cell shrinkage immediately after the exposure to heat stress, followed then by gradual cell stretching over time. The cell viability decreased significantly after heat stress (P=0.001), and the intracellular Ca2+ level increased significantly at 0 h and gradually recovered the normal level at 3 and 6 h. Heat stress induced significant increase in the protein expression of cleaved caspase-3 and time-dependent increase of caspase-12 (P=0.002) and BIP (P=0.008) expression at both the protein and mRNA levels. The expression of P-JNK/JNK protein increased significantly at 0 h (P=0.003) followed by gradual decrease; the expression levels of XBP-1 protein and mRNA gradually decreased after heat stress (P=0.005, P=0.002). Pretreatment with 4-PBA significantly reduced the expression level of cleaved caspase-3 in SH-SY5Y cells following heat stress. Heat stress induces apoptosis of SH-SY5Y cells by triggering endoplasmic reticulum stress and the imbalance of intracellular calcium ion homeostasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.