Abstract

The protection conferred by heat stress (HS) against myocardial ischaemia-reperfusion injury, in terms of mechanical function preservation and infarct size reduction, is well documented and mechanisms underlying these effects have been extensively explored. However, the effect of HS on coronary circulation is less known. The aim of this study was thus to investigate the role of ATP-sensitive potassium (K(ATP)) channels in the protection against ischaemic injury afforded by HS to the coronary endothelial function. Twenty-four hours after whole body hyperthermia (42 degrees C for 15 min, H groups) or sham anaesthesia (Sham groups), isolated perfused rat hearts were subjected to a 15 min stabilization period followed by a 30 min infusion of either 0.3 microM glibenclamide (Gli, a K(ATP) channel blocker) or its vehicle (V). Hearts were then exposed to a low-flow ischaemia (30 min)-reperfusion (20 min) (I/R) or normally perfused (50 min), after which coronaries were precontracted with 0.1 microM U-46619. Finally, the response to the endothelium-dependent vasodilator, 5-hydroxytryptamine (5-HT, 10 microM) was compared to that of the endothelium-independent vasodilator, sodium nitroprusside (SNP, 3 microM). In hearts from Sham-V and Sham-Gli groups, I/R selectively diminished 5-HT-induced vasodilatation without affecting the vasodilatation to SNP. In V-treated groups, prior HS preserved the vasodilatation produced by 5-HT. This HS-induced protection was abolished by Gli treatment. In conclusion, these results suggest that K(ATP) channel activation contributes to the preservation of coronary endothelial function conferred by heat stress against ischaemic insult.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.