Abstract
The purposes of this study were to test the hypothesis that heat stress and hepatic thermal ablation induce nerve growth factor inducible (VGF) and to determine intrahepatic versus systemic VGF expression induced by thermal ablation in vivo and in patients. Hepatocytes and HCC cells were subjected to moderate (45°C) or physiologic (37°C) heat stress for 10 min and assessed for VGF expression at 0-72 h post-heat stress (n ≥ 3 experiments). Orthotopic N1S1 HCC-bearing rats were randomized to sham or laser thermal ablation (3 W × 90 s), and liver/serum was harvested at 0-7 days postablation for analysis of VGF expression (n ≥ 6 per group). Serum was collected from patients undergoing thermal ablation for HCC (n = 16) at baseline, 3-6, and 18-24 h postablation and analyzed for VGF expression. Data were analyzed using ordinary or repeated-measures one-way analysis of variance and post hoc pairwise comparison with Dunnett's test. Moderate heat stress induced time-dependent VGF mRNA (3- to 15-fold; p < 0.04) and protein expression and secretion (3.1- to 3.3-fold; p < 0.05). Thermal ablation induced VGF expression at the hepatic ablation margin at 1 and 3 days postablation but not remote from the ablation zone or distant intrahepatic lobe. There was no detectable serum VGF following hepatic thermal ablation in rats and no increase in serum VGF following HCC thermal ablation in patients at 3-6 and 18-24 h postablation compared to baseline (0.71- and 0.63-fold; p = 0.27 and p = 0.16, respectively). Moderate heat stress induces expression and secretion of VGF in HCC cells and hepatocytes in vitro, and thermal ablation induces local intrahepatic but not distant intrahepatic or systemic VGF expression in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.