Abstract

In the perspective of the global climate change leading to increasing temperature, heat stress (HS) has become a severe issue in broiler production, including the indigenous yellow-feathered broilers. The present study aimed to investigate the effects of HS on jejunal immune response, microbiota structure and their correlation in yellow-feathered broilers. A total of forty female broilers (56-days-old) were randomly and equally divided into normal treatment group (NT group, 21.3 ± 1.2°C, 24 h/day) and HS group (32.5 ± 1.4°C, 8 h/day) with five replicates of each for 4 weeks feeding trial. The results showed that HS exposure increased the contents of TNF-α, IL-1β, and IL-6 in jejunal mucosa (p < 0.05). The HS exposure up-regulated the relative fold changes of NF-κB, TNF-α, IL-1β, and IL-6 (p < 0.01) while down-regulated the relative fold change of IFN-γ in jejunal mucosa (p < 0.05). Meanwhile, HS had no significant impacts on alpha diversity of jejunal microbiota such as Simpson, Chao1 richness estimator (Chao 1), abundance-based coverage estimators (ACE), and Shannon index (p > 0.10). Broilers exposed to HS reduced the jejunal microbial species number at the class and order level (p < 0.05). Moreover, HS decreased the relative abundance of Ruminococcus, Bdellovibrio, and Serratia at the genus level in jejunum (p < 0.05). At the phylum level, four species of bacteria (Bacteroidetes, Cyanobacteria, Thermi, and TM7) were significantly associated with immune-related genes expression (p < 0.05). At the genus level, ten species of bacteria were significantly correlated with the expression of immune-related genes (p < 0.05), including Caulobacteraceae, Actinomyces, Ruminococcaceae, Thermus, Bdellovibrio, Clostridiales, Sediminibacterium, Bacteroides, Sphingomonadales and Ruminococcus. In particular, the microbial with significantly different abundances, Ruminococcus and Bdellovibrio, were negatively associated with pro-inflammatory cytokines expression (p < 0.05). These findings demonstrated that HS exposure promoted the production of pro-inflammatory cytokines in yellow-feathered broilers’ jejunum. The detrimental effects of HS on jejunal immune response might be related to dysbiosis, especially the reduced levels of Ruminococcus and Bdellovibrio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.