Abstract
Heat-induced coagulation of unconcentrated (9%, w/w) and concentrated (18%, w/w) reconstituted skim milk was determined after incubation with transglutaminase (TGase). Cross-linking ∼20% of κ-casein strongly increased the heat stability of unconcentrated milk at pH >6.9, presumably by preventing heat-induced dissociation of κ-casein, whereas increased heat stability of unconcentrated milk at pH 6.6–6.8 was only observed when >80% of casein was cross-linked. Treatment with TGase reduced heat stability of unconcentrated milk at pH <6.6, presumably due to the increased susceptibility of partially cross-linked casein micelles to coagulation arising from heat-induced acidification. A low degree of cross-linking increased the heat stability of concentrated milk at pH >6.8, but more extensive cross-linking progressively reduced heat stability. The degree of cross-linking studied did not increase the heat-stability of concentrated milk at its natural pH. The outcomes of this study substantiate the crucial roles of heat-induced acidification and casein dissociation in heat stability of milk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.