Abstract

Hybrid nanofluids have achieved a lot of interest because they have the ability to improve the thermophysical characteristics for the applicable applications. In the context of heat transport, thermal conductivity performance is more important than other physical characteristics. Therefore, a theoretical analysis is presented for heat transport and nanoparticle concentration on the thermal conductivity of hybrid nanofluid Cu-Al2O3/kerosene oil. Thus, the mathematical model is based on the thermophysical properties of hybrid nanofluids. The heat transport analysis is analyzed with the help of multiple solutions. The stretching/shrinking parameter and mass flux constraint controlled the motion of the flow. A collocation method is used with bvp4c to produce numerical results. In comparison to mono nanofluids, it is noted that the energy transport is significantly improved by the inclusion of a hybrid nanoparticle mixture. Moreover, the shrinking parameter and magnetic field parameter as well as particle volume fraction significantly exhibit the dual nature of the solutions. Further, due to increased suction strength the velocity in x- and y-directions show opposite behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.