Abstract

Trillions of microorganisms that inhabit the intestinal tract form a diverse and intricate ecosystem with a deeply embedded symbiotic relationship with their hosts. As more detailed information on gut microbiota complexity and functional diversity accumulates, we are learning more about how diet-microbiota interactions can influence the immune system within and outside the gut and host health in general. Heat shock proteins are a set of highly conserved proteins that are present in all types of cells, from microbes to mammals. These proteins carry out crucial intracellular housekeeping functions and unexpected extracellular immuno-regulatory features in order to maintain the mucosal barrier integrity and gut homeostasis. It is becoming evident that the enteric microbiota is one of the major determinants of heat shock protein production in intestinal epithelial cells. This review will focus on the interactions between diet, gut microbiota and their role for regulating heat shock protein production and, furthermore, how these interactions influence the immune system and the integrity of the mucosal barrier.

Highlights

  • Through evolution, mammalian hosts have developed a symbiotic relationship with their microbial partners, a relationship that in many cases is mutualistic, i.e., beneficial for both partners [1]

  • In order to understand the mutualistic relationships between gut microbiota and the host, it is of utmost importance to determine the ‘normal’ microbial community profile and to learn how changes in the composition is linked with health and diseases

  • We found both increased expression of HSP27 and preserved tight junction (TJ) protein in cultured intestinal porcine epithelial cells-jejunum (IPEC-J2) with Lactobacillus spp. treatment under enterotoxigenic Escherichia coli (ETEC) challenge [21]

Read more

Summary

Introduction

Mammalian hosts have developed a symbiotic relationship with their microbial partners, a relationship that in many cases is mutualistic, i.e., beneficial for both partners [1]. The interactions between the host and gut microbiota are responsible for the health of individuals from birth, during early life, adulthood and ageing [2,3,4]. In order to understand the mutualistic relationships between gut microbiota and the host, it is of utmost importance to determine the ‘normal’ microbial community profile and to learn how changes in the composition is linked with health and diseases. Normal functioning of the gut relies on the maintenance of a mucosal barrier that is lined with a single layer of columnar epithelial cells. This monolayer, covered with mucus, represents a frontline defense barrier that separates the internal tissue from the external environment, while maintaining nutrient uptake. The significance of HSPs in host natural defense and immune regulation is only starting to become clear [11], and future research is needed to elucidate its role in health and disease

The Healthy Gut Microbiota
Dysbiosis and Enteric Diseases
Diet-Driven Changes in Bacterial Community Composition
HSPs in Cellular Homeostasis and Cytoprotection
HSPs in Microenvironment Homeostasis
Heat Shock Proteins As Intestinal Gatekeepers
Microbiota
Dietary Components
Findings
Perspective

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.