Abstract

Heat-shock proteins are produced in response to different types of stress conditions making cells resistant to stress-induced cell damage. Under normal conditions, heat-shock proteins play numerous roles in cell function, including modulating protein activity by changing protein conformation, promoting multiprotein complex assembly/disassembly, regulating protein degradation within the proteasome pathway, facilitating protein translocation across organellar membranes, and ensuring proper folding of nascent polypeptide chains during protein translation. When cells are stressed, a common response is to undergo cell death by one of two pathways, either 'necrosis' or 'apoptosis'. Recently, both routes to cell death have been revealed to share similar mechanisms, with heat-shock proteins and their cofactors responsible for inhibiting both apoptotic and necrotic pathways. We therefore briefly summarize recent reports showing molecular evidence of cell death regulation by heat-shock proteins and their cochaperones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.