Abstract

Hsp90 is an abundant protein in mammalian cells. It forms several discrete complexes, each containing distinct groups of co-chaperones that assist protein folding and refolding during stress, protein transport and degradation. It interacts with a variety of proteins that play key roles in breast neoplasia including estrogen receptors, tumor suppressor p53 protein, angiogenesis transcription factor HIF-1alpha, antiapoptotic kinase Akt, Raf-1 MAP kinase and a variety of receptor tyrosine kinases of the erbB family. Elevated Hsp90 expression has been documented in breast ductal carcinomas contributing to the proliferative activity of breast cancer cells; whilst a significantly decreased Hsp90 expression has been shown in infiltrative lobular carcinomas and lobular neoplasia. Hsp90 overexpression has been proposed as a component of a mechanism through which breast cancer cells become resistant to various stress stimuli. Therefore, pharmacological inhibition of HSPs can provide therapeutic opportunities in the field of cancer treatment. 17-allylamino,17-demethoxygeldanamycin is the first Hsp90 inhibitor that has clinically been investigated in phase II trial, yielding promising results in patients with HER2-overexpressing metastatic breast cancer, whilst other Hsp90 inhibitors (retaspimycin HCL, NVP-AUY922, NVP-BEP800, CNF2024/BIIB021, SNX-5422, STA-9090, etc.) are currently under evaluation.

Highlights

  • Heat shock proteins (HSP) are members of the molecular chaperones, a group of proteins that play essential role in the folding of a large number of cellular proteins [1,2]

  • HSPs appear to be utilized in carcinogenesis in order for cells to escape the pathways of tumour suppression, to promote progression in more advanced stage, to become treatment-resistant, and to facilitate metastasis [8]

  • HSP90 plays a putative role to the stability and function of a host of proteins such as BCR-ABL, HER2, epidermal growth factor receptor (EGFR), CRAF, BRAF, AKT, MET, VEGFR, FLT3, androgen and estrogen receptors, hypoxia-inducible factor (HIF)-1a, and telomerase; these protein play key roles in breast neoplasia such as growth factor independence, resistance to antigrowth signals, unlimited replicative potential, tissue invasion and metastasis, avoidance of apoptosis, and sustained angiogenesis [35,36]

Read more

Summary

Introduction

Heat shock proteins (HSP) are members of the molecular chaperones, a group of proteins that play essential role in the folding of a large number of cellular proteins [1,2]. They were firstly discovered as mediators of resistance to hyperthermia [3]. Hsp is an abundant protein in mammalian cells [17] It forms several discrete complexes, each containing distinct groups of co-chaperones that assist protein folding and refolding during stress, protein transport and degradation [18]. This review article summarises the more significant points supporting the role of Hsp in breast carcinoma

Hsp90 Biology
Hsp90 Expression in Breast Carcinogenesis
Hsp90 Inhibitors and Breast Cancer
Hsp90 Biology and HSP90 Inhibitors in the Different Subtypes of Breast Cancer
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.