Abstract

While satellite cells play a key role in the hypertrophy, repair, and regeneration of skeletal muscles, their response to heat exposure remains poorly understood, particularly in beef cattle. This study aimed to investigate the changes in the transcriptome, proteome, and proliferation capability of bovine satellite cells in response to different levels of heat stress (HS) and exposure times. Satellite cells were isolated from 3-mo-old Holstein bulls (body weight: 77.10 ± 2.02 kg) and subjected to incubation under various temperature conditions: 1) control (38 °C; CON), 2) moderate (39.5 °C; MHS), and extreme (41 °C; EHS) for different durations ranging from 0 to 48 h. Following 3 h of exposure to extreme heat (EHS), satellite cells exhibited significantly increased gene expression and protein abundance of heat shock proteins (HSPs; HSP70, HSP90, HSP20) and paired box gene 7 (Pax7; P < 0.05). HSP27 expression peaked at 3 h of EHS and remained elevated until 24 h of exposure (P < 0.05). In contrast, the expression of myogenic factor 5 (Myf5) and paired box gene 3 (Pax3) was decreased by EHS compared to the control at 3 h of exposure (P < 0.05). Notably, the introduction of HSP27 small interference RNA (siRNA) transfection restored Myf5 expression to control levels, suggesting an association between HSP27 and Myf5 in regulating the self-renewal properties of satellite cells upon heat exposure. Immunoprecipitation experiments further confirmed the direct binding of HSP27 to Myf5, supporting its role as a molecular chaperone for Myf5. Protein-protein docking algorithms predicted a high probability of HSP27-Myf5 interaction as well. These findings indicate that extreme heat exposure intrinsically promotes the accumulation of HSPs and modulates the early myogenic regulatory factors in satellite cells. Moreover, HSP27 acts as a molecular chaperone by binding to Myf5, thereby regulating the division or differentiation of satellite cells in response to HS. The results of this study provide a better understanding of muscle physiology in heat-stressed cells, while unraveling the intricate molecular mechanisms that underlie the HS response in satellite cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call