Abstract

BackgroundGlioblastoma is one of the malignant tumors of the central nervous system with high lethality, high disability and low survival rate. Effective induction of its death is one of the existing challenges. In recent studies, heat shock protein 27 (HSP27) has been shown to be associated with ferroptosis; therefore, targeting HSP27 may be a potential therapeutic approach for GBM.MethodsImmunohistochemistry and western blot analysis were used to detect the expression of HSP27 in GBM tissues. CCK8, plate clone formation assay, EdU proliferation assay for cell proliferation ability, PI, LDH release assay for cell viability. Reactive oxygen, iron levels, and mitochondrial potential for HSP27 silencing were assayed for ferrotosis in vitro. Western blotting and IP were used to verify the relationship between HSP27 and ACSL4. The effect of knockdown of HSP27 on tumor growth capacity was assessed in an intracranial xenograft model.ResultsHSP27 was significantly highly expressed in GBM. In vitro experiments, knockdown of HSP27 significantly induced ferroptosis in GBM cells. IP and western blot demonstrated a sumo-ization link between HSP27 and ACSL4. In vivo experiments, HSP27 deficiency retarded tumor growth rate by promoting ferroptosis.ConclusionsHSP27 deficiency promotes GBM ferroptosis. Targeting HSP27 may serve as a new direction for GBM treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.