Abstract

ABSTRACT Axolotl eggs were heat shocked (36·8°C, 10min) inside their jelly layers. Heat shock (HS) was shown to induce the precocious appearance of a grey crescent (GC) in a number of eggs immediately after fertilization (Benford & Namenwirth, 1974). It was also demonstrated that this phenomenon occurs in fertilized or artificially activated eggs only when they are shocked within after spawning. The GC forms still later in heated unfertilized, nonactivated eggs. The role of the jelly layers is considered to be mechanical: a proportion of eggs is maintained in a tilted position until the egg is able to orient animal pole upwards under the influence of gravity as a late consequence of activation. The jelly layers are not essential if the eggs are artificially tilted or rotated during HS. GC formation can also be induced in in vitro maturing oocytes, provided they are tilted during HS. Gravity thus plays an essential role in the cytoplasmic rearrangements leading to HS-induced GC formation. Our results indicate a synergistic action between heat and gravity in this process. The cytological appearance of the GC formed in those experiments is that of a ‘Born’s crescent’ with a conspicuous ‘vitelline wall’ (Pasteels, 1964). When oocytes are enucleated before maturation, HS has no effect on GC formation. A nuclear factor is therefore essential, as has been demonstrated in early GC formation induced by inhibitors of protein synthesis. Finally, incorporation of amino acids into oocyte proteins appears to be rapidly inhibited by HS (from 5 min). However, we cannot conclude that GC formation is in fact triggered by inhibition of protein synthesis. It is also likely that HS disrupts cytoskeletal structure, hence facilitating cytoplasmic rearrangements. Nevertheless, these results are in agreement with the scheme we recently proposed for GC formation in the rotated axolotl oocyte (Gautier & Beet-schen, 1985).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.