Abstract

Heat-shock factor 1 (HSF-1), a transcription factor for heat-shock proteins (HSPs), is known to interfere with the transcriptional activity of many oncogenic factors. In the present work, we have discovered that HSF-1 ablation induced the multidrug resistance gene, MDR1b, in the heart and increased the expression of P-glycoprotein (P-gp, ABCB1), an ATP binding cassette that is usually associated with multidrug-resistant cancer cells. The increase in P-gp enhanced the extrusion of doxorubicin (Dox) to alleviate Dox-induced heart failure and reduce mortality in mice. Dox-induced left ventricular (LV) dysfunction was significantly reduced in HSF-1(-/-) mice. DNA-binding activity of NF-κB was higher in HSF-1(-/-) mice. IκB, the NF-κB inhibitor, was depleted due to enhanced IκB kinase (IKK)-α activity. In parallel, MDR1b gene expression and a large increase in P-gp and lowering Dox loading were observed in HSF-1(-/-) mouse hearts. Moreover, application of the P-gp antagonist, verapamil, increased Dox loading in HSF-1(-/-) cardiomyocytes, deteriorated cardiac function in HSF-1(-/-) mice, and decreased survival. MDR1 promoter activity was higher in HSF-1(-/-) cardiomyocytes, whereas a mutant MDR1 promoter with heat-shock element (HSE) mutation showed increased activity only in HSF-1(+/+) cardiomyocytes. However, deletion of HSE and NF-κB binding sites diminished luminescence in both HSF-1(+/+) and HSF-1(-/-) cardiomyocytes, suggesting that HSF-1 inhibits MDR1 activity in the heart. Thus, because high levels of HSF-1 are attributed to poor prognosis of cancer, systemic down-regulation of HSF-1 before chemotherapy is a potential therapeutic approach to ameliorate the chemotherapy-induced cardiotoxicity and enhance cancer prognosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call