Abstract

ABSTRACTCeramic parts made of doped lanthanum chromite are used as interconnects and end plates in stacks for several solid oxide fuel cell (SOFC) designs. Metallic conductors have to be attached to enable a low-resistance connection between individual stacks in each SOFC unit and to permit power to be drawn from the SOFC. The resistances of the metal-ceramic bond and the metallic conductors have to be stable under operating conditions, i.e., 1000°C in air. Consequently, heat-resistant materials have to be used. A two-step process has been developed to connect commercially available, Ni- or Febased metallic conductors to ceramic SOFC end plates by vacuum furnace brazing. In the first step, a metallic sheet, which acts as the current collector, is brazed onto the ceramic end plate. Thereby, the much lower electrical conductivity of the ceramic part is compensated by that of the metal. The chromium alloy CrFe5Y2O31 is suitable because it is heat-resistant, and its thermal expansion coefficient is close to that of lanthanum chromite. In the second step, metallic wires or strips are brazed on the current collector. Since this joint area is significantly smaller than that of the first joint, materials with a different thermal expansion coefficient can be used, such as conventional heat-resistant nickel alloys (Inconel 617) and ferritic stainless steels (FeCrAl 25 5). Filler alloys for both brazing steps with matching melting points have been found. Hence, both brazing steps can be performed cost-effectively in one heating step. Suitable parameters for vacuum furnace brazing of both joints are presented, and the composition of the filler alloys is given. Data concerning the long-term behavior of the joint resistances in air at 1000'C are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.