Abstract

The heat resistance ofCitrobacter freundii NCTC 9750 between 45–65°C in media with various water activities has been determined. At a water activity of nearly 1.00, the Arrhenius plot of the death rate shows a sharp breakpoint at 56.5°C, suggesting the existence of at least two different thermal inactivation processes causing lethality of the bacterial cell. The activation energy below 56.5°C is 0.4186 MJ/mol (100 000 cal/mol), above 56.5°C it is 0.1863 MJ/mol (44 500 cal/mol). After addition of sucrose (1.8 mol/l) or NaCl (0.77 mol/l) to the heating medium, such a breakpoint is not observed. The activation energy for these processes are, for sucrose; 0.2097 MJ/mol, for NaCl; 0.3641 MJ/mol. However, at an NaCl concentration of 1.54 mol/l there is a breakpoint at 53.3°C. The influence of the sucrose concentration on the heat resistance can be described by the formula: ln kS=ln kO−a [sucrose]. Such a simple correlation does not exist for the influence of NaCl or glycerol. The heat inactivation of whole cells ofC. freundii was also measured with a differential scanning calorimeter. The first irreversible conformation change took place at 323 K, the main conformation change at 343 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.