Abstract

Recent fire cases indicated again the importance of fire research. Fast development of construction technology requires new materials. Initiation and development of fire are strongly influenced by the choice of construction materials. In addition to their mechanical properties, their behaviour in elevated temperature is also of high importance. Residual compressive strength of concrete exposed to high temperatures is influenced by the following factors: water-to-cement ratio, cement-to-aggregate ratio, type of aggregate and water content of concrete before exposing it to high temperatures and the fire process. Therefore, mix design and composition of concrete are of high importance for high temperatures. Based on the literature, the fire resistance of concrete is influenced by the used cement type. As regards the cement type, considerable importance has been attached to the various auxiliary materials, such as slag, fly ash, trass, metakaolines and silica fume. There has been no special research devoted to the fire behaviour of pure portland cements. Pure portland cements can be made with various oxide compositions or with different grinding fineness, which increases the resistance of cements to fire. The question arises what effects grinding fineness and oxide composition have on fire resistance of cements. In my experiments, the resistance of portland cements of different composition and grinding fineness to fire (high temperature) were examined. For the test of the solidified cement paste, cement paste cubes of 30-mm edge length were prepared. The specimens were stored in water for 7 days and then in laboratory conditions for 21 days. The cubes of more than 28 days were heated to the given temperature in the furnace and then kept at the given temperature for 2 h (50, 150, 300, 500, 800 °C). Following the 2 h of thermal load, the specimens were examined once their temperature cooled down to room temperature. I have experimentally demonstrated that in case of portland cements, the grinding fineness and aluminate modulus of the cement (i.e. the oxide composition of the cement) have a significant effect on its fire resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.