Abstract

The heat resistance of Campylobacter jejuni strains AR6 and L51 and the heat resistance of Campylobacter coli strains DR4 and L6 were measured over the temperature range from 50 to 60 degrees C by two methods. Isothermal measurements yielded D55 values in the range from 4.6 to 6.6 min and z values in the range from 5.5 to 6.3 degrees C. Dynamic measurements using differential scanning calorimetry (DSC) during heating at a rate of 10 degrees C/min yielded D55 values of 2.5 min and 3.4 min and z values of 6.3 degrees C and 6.5 degrees C for AR6 and DR4, respectively. Both dynamic and isothermal methods yielded mean D55 values that were substantially greater than those reported previously (0.75 to 0.95 min). DSC analysis of each strain during heating at a rate of 10 degrees C/min yielded a complex series of overlapping endothermic peaks, which were assigned to cell wall lipids, ribosomes, and DNA. Measurement of the decline in the numbers of CFU in calorimetric samples as they were heated showed that the maximum rate of cell death occurred at 56 to 57 degrees C, which is close to the value predicted mathematically from the isothermal measurements of D and z (61 degrees C). Both estimates were very close to the peak m1 values, 60 to 62 degrees C, which were tentatively identified with unfolding of the 30S ribosome subunit, showing that cell death in C. jejuni and C. coli coincided with unfolding of the most thermally labile regions of the ribosome. Other measurements indicated that several essential proteins, including the alpha and beta subunits of RNA polymerase, might also unfold at the same time and contribute to cell death.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.