Abstract
The proposed study aims to evaluate the feasibility of a range extender scroll engine by means of an analytical heat release rate analysis. This novel engine technology is comprising an upstream compressor and a downstream scroll expander which is mechanically connected and drives the compressor. Hence, the compression and expansion processes of the air-fuel mixture are decoupled which enables the possibility to apply higher expansion than compression ratios resulting in a scroll engine combustion process being similar to the Miller or Aktinson cycle. The scroll engine performance in terms of power output and thermal efficiency was accordingly evaluated for two compression ratios of 8.2:1 and 10.1:1 and six corresponding expansion ratios in the range of 8.2:1 to 17.8:1. It has been proven that high compression ratios are beneficial for the power output as more fuel can be introduced into the expander part. At a constant compression ratio, the power output increased for a rising expansion ratio but at the expense of a reduced power density. The evaluation revealed a peak value of 44.48kW at a compression ratio of 10.1:1 and an expansion ratio of 17.8:1. A more thorough expansion process due to the implementation of a Miller/Aktinson cycle resulted in a significantly increasing thermal efficiency for a rising ratio of expansion to compression ratio reaching a peak value
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.