Abstract

BackgroundHeat preconditioning significantly preserved liver graft function after cold preservation in animal experimental model. The elevation of heat shock protein 70 (HSP70) was claimed to play a critical role in protecting grafts against cold preservation-induced hepatocyte apoptosis. However, little is known about whether HSP70 also plays an immunomodulatory role in cold preserved cells. This study aimed at investigating the relationship between HSP70 protein and the immunoactivity in response to lipopolysaccharide (LPS) stimulation. Methods and resultsA normal rat hepatocyte cell line was preserved with University of Wisconsin (UW) solution, Ringer's lactate solution (RL), and phosphate-buffered saline (PBS) at 4 °C. No significant morphological alteration was noted in UW-preserved cells after 24 h through phase-contrast microscopic observation and fluorescent viability stain. Western blotting showed a two-fold increase in the ratio of HSP70/Bax proteins in cells after 24 h of UW preservation. Heat preconditioning significantly enhanced the recovery of lactate dehydrogenase (LDH) activity in both RL- and UW-preserved cells that were stored for a period of 12 h or less. Moreover, heat preconditioning promoted HSP70 and NF-κB p50 nuclear translocation and suppressed the LPS-induced nuclear p50 accumulation in cells before UW preservation. Immunofluorescent stain revealed that the LPS-induced p50 protein redistribution to nuclear membrane might contribute to NF-κB activation, while heat preconditioning and UW cold preservation completely abrogated the p50 intranuclear redistribution. Thus NF-κB p50 might be responsible for the endotoxin tolerance induction. ConclusionsThese findings strongly suggest that heat preconditioning not only preserves hepatocyte viability after cold preservation and rewarming, but also ameliorates its immunoactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.