Abstract
The effect of driving force on the division of excitation energy between the asymmetric colliding partners in deep inelastic heavy-ion collisions is studied in the nucleon-exchange model. For this purpose an event-by-event analysis using Monte Carlo simulation technique is performed. It is seen that the fraction of the total excitation energy carried by the projectile-like fragment is sensitive to the mass drift. The model is also applied to analyze the correlation between fragment mass and excitation energy for a given total energy loss and significant correlation is found. The reactions induced by $^{56}\mathrm{Fe}$ at 9 MeV/nucleon and $^{74}\mathrm{Ge}$ at 8.5 MeV/nucleon on $^{165}\mathrm{Ho}$ are considered in our analysis and the calculated correlations are in good agreement with the results obtained from the kinematic coincidence experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.