Abstract
Heat/mass transfer characteristics on the near-tip blade surface under combustor-level high inlet turbulence have been investigated within a high-turning turbine rotor passage by using the naphthalene sublimation technique. The inlet turbulence intensity and length scale are 14.7% and 80 mm, respectively. The tip gap-to-chord ratio is changed to beh/c = 0.74, 1.47, and 2.94 percents. Increasingh/c results not only in higher heat/mass transfer in the pressure-side tip region but also in more convective transport on the pressure surface even far away from the tip edge. Severe heat/mass transfer is always observed in the suction-side tip-leakage flow region which can be divided into two distinct high transport regions. There is a local maximum of heat/mass transfer along the trailing-edge centerline. This arises from the interaction of a tip-leakage vortex with a trailing-edge vortex shedding. Comparisons of the present data forh/c = 2.94 percents with the previous low turbulence one show that there is a large discrepancy of heat/mass transfer in the pressure-side near-tip area, which diminishes with departing from the tip edge. The suction-side heat/mass transfer in the tip-leakage flow region is less influenced by the high inlet turbulence than that at the mid-span. The leading-edge heat/mass transfer under the high inlet turbulence is always higher than that in the low turbulence case, while there is no big difference in the trailing-edge heat/mass transfer between the two cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.