Abstract

We consider a heat kernel approach for the development of stochastic pricing kernels. The kernels are constructed by positive propagators, which are driven by time-inhomogeneous Markov processes. We multiply such a propagator with a positive, time-dependent and decreasing weight function, and integrate the product over time. The result is a so-called weighted heat kernel that by construction is a supermartingale with respect to the filtration generated by the time-inhomogeneous Markov processes. As an application, we show how this framework naturally fits the information-based asset pricing framework where time-inhomogeneous Markov processes are utilized to model partial information about random economic factors. We present examples of pricing kernel models which lead to analytical formulae for bond prices along with explicit expressions for the associated interest rate and market price of risk. Furthermore, we also address the pricing of fixed-income derivatives within this framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.