Abstract

We prove Gaussian upper bounds for kernels associated with non – symmetric, non – autonomous second order parabolic operators of divergence form subject to various boundary conditions. The growth of the kernel in time is determined by theboundary conditions and the geometric properties of the domain. The theory gives a unified treatment for Dirichlet, Neumann and Robin boundary conditions, and the existence of a Gaussian type bound is essentially reduced to verifying some properties of the Hilbert space in the weak formulation of the problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.