Abstract

We compare the short-time expansion of the heat kernel on a Riemannian manifold with the formal stationary phase expansion of its representing path integral and prove that these asymptotic expansions coincide. Besides shedding light on the formal properties of quantum mechanical path integrals, this shows that the lowest order term of the heat kernel expansion is given by the Fredholm determinant of the Hessian of the energy functional on the space of finite energy paths. We also relate this to the zeta determinant of the Jacobi operator, considering both the near-diagonal asymptotics as well as the behavior at the cut locus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.