Abstract
An electrochromic device (ECD), which can switch between black and transmissive states under electrical bias, is a promising candidate for smart windows due to its color neutrality and excellent durability. Most of the black ECDs are achieved through a reversible electrodeposition and dissolution mechanism; however, they typically suffer from relatively poor cycling stability and a slow coloration/bleaching time. Herein, we present a heat-insulating black ECD with a gel electrolyte that operates via reversible Ni-Cu electrodeposition and dissolution. With the adoption of a Cu alloying strategy and a compatible gel electrolyte, this two-electrode ECD (5.0 cm × 2.5 cm) can achieve a cycling stability of 1500 cycles with transmittance modulation up to 55.2% in short coloration (6.2 s) and bleaching times (13.2 s) at a wavelength of 550 nm. Additionally, the ECD can be switched from the transparent state (visible light transmittance: 0.566) to the opaque state (visible light transmittance: 0.003) within 1 min, reaching transmittance less than 5% across the visible-near-infrared spectrum (400-2000 nm) to efficiently block solar heat. Besides, in the voltage-off state, the black Ni-Cu alloy film can be sustained for more than 60 min (at room temperature, λ = 550 nm). Under infrared irradiation (170 W/m2) for 30 min, the black ECD blocks up to 35.0% of infrared radiation, which not only effectively prevents the heat transmission for energy management but also finds potential applications for promoting indoor human health and indoor farming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.