Abstract
Alpha-crystallin from the bovine eye lens was studied by small-angle neutron scattering (SANS) in 90% D2O buffer solution at 20, 50, 60, 65, 75, 85 and 95°C. The temperature points for this study were specified on the basis of differential scanning calorimetric analysis of alpha-crystallin solutions which has shown two endothermic transitions with midpoints at 64.5 and 86°C. The SANS study revealed no significant alpha-crystallin quaternary structure alterations at 50°C as compared with 20°C. At 60-65°C the SANS data confirmed substantial alpha-crystallin quaternary structure rearrangements which resulted in the formation of alpha-crystallin oligomers with a similar shape but approximately twofold increased molecular weight as compared to the native state at 20°C. At higher temperatures (75, 85 and 95°C) the SANS patterns were very similar and were consistent with the scattering by rod-like particles with a cross-section radius of gyration ∼55 This transformation of alpha-crystallin to the rod-like particles was evidently irreversible as these particles remained in solution after cooling to 20°C. Ab initio shape models of the native and high-temperature alpha-crystallin were retrieved with DAMMIN and DAMAVER software. Schematic model of alpha-crystallin heat-induced quaternary structure transitions was considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.