Abstract

Materials based on ordered protein aggregates have recently received a lot of attention for their application as drug carriers, due to their biocompatibility and their ability to sequester many biological fluids. Bovine serum albumin (BSA) is a good candidate for this use due to its high availability and tendency to aggregate and gel under acidic conditions. In the present work, we employ spectroscopic techniques to investigate the heat-induced BSA aggregation at the molecular scale, in the 12–84 °C temperature range, at pH = 5 where two different isoforms of the protein are stable. Samples at low and high protein concentration are examined. With the advantage of the combined use of FTIR and CD, we recognize the aggregation-prone species and the different distribution of secondary structures, conformational rearrangements and types of aggregates, of millimolar compared to micromolar BSA solutions. Further, as a new tool, we use the Maximum Entropy Method to fit the kinetic curves to investigate the distribution of kinetic constants of the complex hierarchical aggregation process. Finally, we characterize the activation energy of the initial self-assembling step to observe that the formation of both small and large aggregates is driven by the same interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.