Abstract
Liver regeneration is induced by heat stress in the small viviparous fish, Poeciliopsis. Acute exposure to sublethal temperatures, one to two degrees below their killing temperature, damages tissue and initiates liver cell proliferation in P. lucida, P. monacha, and P. monacha-lucida hybrid clones, SYN-4 and SYN-5. Regeneration of liver cells began within 1–2 days following heat stress and proceeded over 5 days. Peak cell proliferation occurred 2–3 days after treatment in fish of all four genotypes. Cell proliferation was induced in the two all-female clones, SYN-4 and SYN-5, by exposure to 40.5° C for 60 minutes. This treatment imposed mortalities of 17.9% and 16.7%, respectively, whereas reduction of the temperature to 39.5°C and reduction of the time to 30 minutes resulted in no mortalities without significantly lowering the level of cell proliferation (p > 0.05). Liver cell proliferation induced by both heat treatments was significantly higher (p < 0.05) in the SYN-5 hybrids than in SYN-4. The induction of liver cell proliferation with sublethal temperature exposures is discussed as it may relate to chemical carcinogenesis in both feral and laboratory fish. Acute heat exposure may be used experimentally in fish as an independent stimulus for liver cell proliferation in carcinogenesis studies. In poikilothermic animals-heat exposure offers an alternative to surgical removal of approximately two-thirds of the liver, the method most frequently used in rodents to study the process of liver regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.