Abstract

Self-heating from magnetic nanoparticles under AC magnetic field can be used either for hyperthermia or to trigger the release of an anti-cancer drug, using thermo-responsive polymers. The heat generated by applying an AC magnetic field depends on the properties of magnetic nanoparticles (composition, size, crystal structure) as well as the frequency and amplitude of the magnetic field. Before these systems can be efficiently applied for in vitro or in vivo studies, a thorough analysis of the magnetically induced heating is required. In this study, CoFe 2O 4 nanoparticles were synthesized, dispersed in water, and investigated as heating agents for magnetic thermo-drug delivery and hyperthermia. The temperature profiles and infrared (IR) camera images of heat generation of CoFe 2O 4 nanoparticles under various AC magnetic fields of 127–700 Oe at 195, 231, and 266 kHz were measured using an IR thermacam, excluding the external AC magnetic field interruption. The CoFe 2O 4 nanoparticles were successfully dispersed in water using an 11-mercaptoundecanoic acid ligand exchange method to exchange the solvent used for synthesis of hexane for water. During the heating experiments, each of CoFe 2O 4 nanoparticle solutions reached a steady state where the temperature rose between 0.1 and 42.9 °C above ambient conditions when a magnetic field of 127–634 Oe was applied at 231 or 266 kHz. The heat generation was found to be dependent on the intensity of AC magnetic field and applied frequency. Therefore, the desired heating for magnetically triggered drug delivery or hyperthermia could be achieved in water-dispersed CoFe 2O 4 nanoparticles by adjusting the AC magnetic field and frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call