Abstract

Abstract Ultrasound wave propagation through a porous medium results in a temperature increase due to mechanical dissipation. This temperature increase has different applications in medical science, food industry, and engineering. A fully coupled dynamic thermo-hydro-mechanical (THM) model is presented for numerical modelling of this phenomenon in deforming porous media. The temperature increase due to wave propagation is taken into account in the energy conservation equation by using a viscous drag force and considering solid-fluid interaction. The solid and fluid displacements ( U → s and U → w ) and the temperature ( T ) are taken as primary unknowns in the model known in literature as uUT model. The finite element method is used for the discrete approximation of the governing partial differential equations. Based on the numerical examples carried out in this study, it is shown that the scale of the simulated sample may have a very pronounced effect on the results, and that results from small scale laboratory samples should not be extrapolated to the actual field condition. Furthermore, the results of ultrasound application in porous media indicate a significant increase in temperature in the vicinity of the source boundary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.