Abstract

As transistor gate lengths are scaled towards the 10-nm range, thermal device design is becoming an important part of microprocessor engineering. Decreasing dimensions lead to nanometer-scale hot spots in the transistor drain region, which may increase the drain series and source injection electrical resistances. Such trends are accelerated by the introduction of novel materials and nontraditional transistor geometries, including ultrathin body, FinFET, or nanowire devices, which impede heat conduction. Thermal analysis is complicated by subcontinuum phenomena including ballistic electron transport, which reshapes the heat generation region compared with classical diffusion theory predictions. Ballistic phonon transport from the hot spot and between material boundaries impedes conduction cooling. The increased surface to volume ratio of novel transistor designs also leads to a larger contribution from material boundary thermal resistance. This paper surveys trends in transistor geometries and materials, from bulk silicon to carbon nanotubes, along with their implications for the thermal design of electronic systems

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.