Abstract

New empirical correlation models are constructed to characterise heat transfer associated with spray evaporative cooling of vibrating surfaces - a process involving complex two-phase physics well beyond current numerical simulation capabilities. The proposed correlation models, which account for dynamic, rather than just static surface conditions as in existing models, are constructed using dimensional analysis involving the Generalized Buckingham Π-Theorem. Experimentally-measured spray evaporative cooling data is used to fit the model using the Vibrational Reynolds number and a dimensionless acceleration number which better correlate the influence of surface frequency and amplitude in the nucleate boiling regime. Different coolant flow-rates through a full-cone spray nozzle are used to cool a flat circular test-piece acting as a horizontal surface. The test-piece surface is excited by a shaker through a range of low and high vibration frequencies and amplitudes. The results show that surface dynamic effects certainly influence nucleate boiling, but they also show that surface vibration does not have the same effect for all excess temperatures - dynamic effects can either increase or decrease heat transfer depending on the heat transfer mechanism. These new models are important for thermal management in several areas, particularly involving batteries, power electronics, and electrical machines in automotive and aerospace applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call