Abstract

With two periods of EISCAT‐VHF radar observations, magnetically quiet and moderately disturbed, we have calculated the H+ and O+ heat fluxes in using formulae of Wu and Taieb (1993), accounting not only for temperature gradients but also for pressure gradients, velocity gradients, and diffusion‐thermal effects. They correspond to different physical processes that are calculated and compared between them. Then, the general features of the H+ and O+ ion thermal conductions are studied during the two periods of observation in the high‐latitude topside ionosphere. The analysis of the two periods of measurements revealed the following trends, to be confirmed by further observations: (1) During the two periods the H+ heat flux Q2 is always upward in the altitude range from 600 km up to about 1000 km. It is larger during the quiet period than during the disturbed period. (2) The most important dominant mechanism for H+ heat flux is the diffusion‐thermal effect due to the H+‐O+ collision, with a correcting term due to the H+ temperature gradient. (3) The O+ heat flux is always downward in the same altitude range during the two periods of observations. The absolute value during the disturbed period is slightly larger than that during the quiet period. (4) The dominant mechanism for O+ heat flux is its temperature gradient, corrected by the coupling with the H+ ion. (5) The O+ thermal conduction is less important during the quiet period than during the disturbed period, while for the H+ thermal conduction it is the contrary. (6) The H+ thermal conduction increases with altitude below about 1000 km.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.