Abstract

We study the heat fluctuation of an overdamped Brownian particle trapped in a harmonic potential and driven by active noise. Employing the phase-space path integral method we derive a general formula for the probability distribution of heat exchange in a generic model of an active bath. The work has been extended by considering two particular models of active noise and computing an exact analytical expression for distribution in Gaussian colored noise and a semianalytical result in the Poissonian bath. We corroborate the fluctuation theorem with our analytical findings by introducing the familiar concept of effective temperature and as a corollary the total entropy production is calculated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call