Abstract

To study the amount of heat generated by radioactive decay in the continental crust, the usual practice in the literature is to fit to the heat flow and radioactivity data a relationship of the form: Q = Q r + D · A where Q and A are the observed heat flow and radiogenic heat production. Q r is the “reduced” heat flow and D is a depth scale. This procedure implicitly assumes that uranium, thorium and potassium have identical distributions in the crust. We suggest that significant information may be lost as the three radioelements may in fact be affected by processes operating over different depths. Data published for four heat flow provinces throughout the world are used to estimate the distributions of uranium, thorium and potassium in the continental crust. These distributions are characterized by a depth scales defined as follows: D i =∫0h C i(z)C i(0)dz where h is the thickness of the layer containing the bulk of radioactivity and C i(z) the concentration of element i at depth z. Three depth scales are computed from a least-squares fit to the following relationship: Q = Q r + D U · A U + D T · A T + D K · A T where Q is the observed heat flow and Q r some constant (a reduced heat flow). A i is the heat generation rate due to the radioactive decay of element i, and D i is the corresponding depth scale. The analysis suggests that the three distributions are different and that they have the same basic features in the four provinces considered. The depth scale for potassium is large in granitic areas, that for thorium is small and that for uranium lies between the other two. We propose a simple model according to which each radioelement essentially provides a record for one process. Potassium gives a depth scale for the primary differentiation of the crust. Thorium gives the depth scale of magmatic or metamorphic fluid circulation. Finally, the uranium distribution reflects the late effects of alteration due to meteoric water. We show that the heat flow and radioactivity data are compatible with this model. Our analysis and numerical results are supported by data from deep boreholes and by geochemical evidence, such as detailed investigations of plutonic series and studies of U-Th-Pb systematics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.