Abstract

Twenty-four heat flow measurements are clustered in 5–20 m.y. and 60–80 m.y. old seafloor on the crest and northern flank of the Pacific-Antarctic Ridge. The crestal heat flow stations are characterized by (1) low mean heat flow relative to that predicted by theoretical models, (2) thin sediment cover, and (3) high ratio of standard deviation to mean heat flow, all of which indicate a system dominated by convective heat transfer. The measurements made on older seafloor of the northern flank have (1) mean heat flow equal to the theoretical predictions of conductively-cooling lithospheric plate models, (2) thick sediment cover, and (3) low ratio of standard deviation to mean heat flow. Thus convective loss associated with hydrothermal circulation is not considered to be important in 60–80 m.y. old seafloor on the Pacific-Antarctic Ridge. The pattern of heat flow on this ridge is thus similar to that in the Atlantic, Indian and Pacific Oceans: hydrothermal circulation is dominant on the ridge crest but is suppressed on the flanks, possibly due to a difference in the hydraulic admittance of the sediment between the two regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.