Abstract

In order to further understand the pulsed-laser melting (PLM) of Mn and N implanted GaAs, which we have used to synthesize thin films of the ferromagnetic semiconductor Ga1−xMnxAs and the highly mismatched alloy GaNxAs1−x, we have simulated PLM of amorphous (a-) and crystalline (c-) GaAs. We present a numerical solution to the one-dimensional heat equation, accounting for phase-dependent reflectivity, optical skin depth, and latent heat, and a temperature-dependent thermal conductivity and specific heat. By comparing the simulations with experimental time-resolved reflectivity and melt depth versus laser fluence, we identify a set of thermophysical and optical properties for the crystalline, amorphous, and liquid phases of GaAs that give reasonable agreement between experiment and simulation. This work resulted in the estimation of thermal conductivity, melting temperature and latent heat of fusion of a-GaAs of 0.008 W/cm K at 300 K, 1350 K, and 2650 J/cm3, respectively. These materials properties also allow the prediction of the solidification velocity of crystalline and ion-amorphized GaAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.