Abstract

Twenty-five new heat flow measurements made in the Gulf of California are presented. All the values except two at the mouth of the Gulf and two in the Sal si Puedes basin are high. The values ranged from 2.0 to greater than 10 μcal/cm 2 sec (82 to > 420 mW/m 2) with eight values greater than 5.2 (210 mW/m 2). Due to high rates of sedimentation throughout the Gulf, the actual heat flow, in many cases, may be up to 25% greater than that recorded. Most of the heat flow stations are concentrated in the Farallon and Guaymas basins and show a marked increase towards the central deeps, where new crust is believed to be forming. The heat flow values in the Farallon basin show a sharp peak 10–15 km southeast of the central depression while those in the Guaymas basin peak in the depression. The heat flow profiles across the Guaymas and Farallon basins are remarkably similar to those observed on other well sedimented spreading centers such as the northern portion of the Explorer trough. Thus they may provide evidence that the crust is being created by an axially symmetric intrusion process with a major loss of heat due to hydrothermal circulation. The absence of magnetic anomalies in the Gulf has been attributed to the supposed presence of large grains in the intruded basalt. Large grains form by the slow cooling of the basalt under a layer of sediment. Prominent magnetic anomalies have been observed on the northern portion of the Explorer trough. Observational data suggest that the thermal processes at this ridge axis and the center of the Farallon basin are identical. We suggest that further careful study is needed in the Gulf before the slow cooling model is accepted as an explanation for the attenuation of the magnetic anomalies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.