Abstract
AbstractFrom 1963 to 1973 the U.S. Geological Survey measured heat flow at 356 sites in the Amerasian Basin (Western Arctic Ocean) from a drifting ice island (T‐3). The resulting measurements, which are unevenly distributed on Alpha‐Mendeleev Ridge and in Canada and Nautilus Basins, greatly expand available heat flow data for the Arctic Ocean. Average T‐3 heat flow is ~54.7 ± 11.3 mW/m2, and Nautilus Basin is the only well‐surveyed area (~13% of data) with significantly higher average heat flow (63.8 mW/m2). Heat flow and bathymetry are not correlated at a large scale, and turbiditic surficial sediments (Canada and Nautilus Basins) have higher heat flow than the sediments that blanket the Alpha‐Mendeleev Ridge. Thermal gradients are mostly near‐linear, implying that conductive heat transport dominates and that near‐seafloor sediments are in thermal equilibrium with overlying bottom waters. Combining the heat flow data with modern seismic imagery suggests that some of the observed heat flow variability may be explained by local changes in lithology or the presence of basement faults that channel circulating seawater. A numerical model that incorporates thermal conductivity variations along a profile from Canada Basin (thick sediment on mostly oceanic crust) to Alpha Ridge (thin sediment over thick magmatic units associated with the High Arctic Large Igneous Province) predicts heat flow slightly lower than that observed on Alpha Ridge. This, along with other observations, implies that circulating fluids modulate conductive heat flow and contribute to high variability in the T‐3 data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.