Abstract

Tailoring heat flow in solids has profound implications for the innovation of functional thermal devices. However, the current methods face technological challenges related to system complexity, material stability, and operating temperature. In this study, we demonstrated efficient heat flow modulation in a single material without a phase transition, using a simple and entirely material-independent strategy, kinked nanostructure patterning, at near-ambient temperature. By carefully controlling the kink arm length and kink angle of the Si nanoribbons, we achieved a thermal conductivity modulation of up to ∼20%. Our theoretical modeling showed that this modulation results from the competing roles of phonon backscattering and open view channels on heat transport. We also build a regime map based on the existence of an open view channel and provide concrete design guidelines for thermal conductivity modulation considering the kink angle and arm length. This study opens up new opportunities for efficient heat flow manipulation through nanostructure patterning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call