Abstract

ABSTRACTHeat has a close relation to cratonic stability. We reconstructed the thermal history of the eastern North China, Wyoming, and Siberian cratons by using xenolith and thermal indicator data, and then the thermal lithospheric thickness in geological time was calculated by combining the crustal structural and thermal parameters. Researches from three cratons demonstrate that heat-flow values of the eastern North China Craton (eNCC) and Wyoming Craton (WC) have increased exceeding 20 mW/m2 in the Meso-Cenozoic and the thermal lithospheric thickness has decreased by >100 km because of the cratonic destabilization. However, the thermal history variation of the Siberian Craton (SC) is small, ~5 mW/m2, the lithosphere has remained stable and it has experienced relatively little lithospheric thinning <100 km. The differences of the cratonic thermal regime are related to the breakup of the Pangea supercontinent. Destabilized cratons on active continental margin are directly affected by plate subduction. Stable cratons in the interior of the supercontinents are directly affected by the upwelling of superplumes and that may result in lithospheric thinning. Differences in the thermal evolutions of cratons provide new geothermal evidence for the different thermal regimes associated with the breakup of the Pangea supercontinent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call