Abstract

The heat is generated inside the stack of superconducting tapes mounted on the surface of the electrical machine rotor during its operation and magnetization. Cooling of such stack presents challenges because of the layered structure of both tape, and stack. Moreover, the tapes should be electrically isolated to minimize the AC losses, that assumes gluing them, rather than soldering. The calculations consider a conductive heat dissipation also through the rotor iron.Results show that: liquid nitrogen provides an effective cooling; the temperature of the stack shows complex distribution patterns with the gaseous coolant. Additional preventive measures were analyzed to keep the stack operational in vacuum conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.