Abstract

Performance of a direct evaporative cooler (DEC) was numerically studied at various outdoor and indoor air conditions, with geometric and physical characteristics of it being extracted based on thermal comfort criteria. For this purpose, a mathematical model was utilized based on the equations of mass, momentum, and energy conservation to determine heat and mass transfer characteristics of the system. It is found that the DEC can provide thermal comfort conditions when the outdoor air temperature and relative humidity (RH) are in the range of 27–41 °C and 10–60%, respectively. The findings also revealed that by raising the RH of ambient air, the system will reach the maximum allowed RH faster and hence a smaller heat exchanger can be used when the ambient air has higher RH. Finally, performance of the DEC in a central province of Iran was investigated, and a design guideline was proposed to determine size of the required plate heat exchangers at various operating conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.